Transport Telematic in Practice

System Approach to the Telematics Systems' and Services' Proposals and Realizations

Katowice 28/09/2010

Tomas Starek CTU - Faculty of Transportation Sciences

Content

- Introduction
- ITS System proposal cycle
- Ex-Ante Evaluation of ITS Projects
- Implementation / Supervision
- Ex-Post Evaluation of ITS Projects
- Conclusion

Introduction

- Need of ITS strategy
 - National level
 - Regional level
 - Local level
- Definition of objectives
 - Different level of detail with respect to the level of strategy
- Technology independent
- Harmonization of different levels
 - Horizontal
 - Vertical

Transport Telematics in Practice

Katowice, 28h September 2010

Introduction

ITS Projects' Life-Cycle

Pre-Investment Phase Analyses

- Opportunity Study
 - Investment opportunities identification
 - Economical potential
 - Risk Assessment
- Pre-Feasibility Study
 - Mid level
 - Similar structure as the FS
 - Lover level of worked up information
- Feasibility Study
 - Detailed material
 - Precise definition of all project aspects
- Differences in the level of detail
 - Effective management of sunk-cost

Final Selection

Pre-selection

Go / No Go

- Legal feasibility
 - Legal constrains
- Schedule feasibility
 - Project delivery time
- Operational feasibility
 - Organizational aspects
- Technology and system feasibility
 - Different solutions
 - Different performance
- Economic feasibility
 - Project sustainability
 - Business Case Set Up

Complex description of all project's aspects in the view of project objectives

- ITS applications & services are "publically beneficial"
 - Quantitative impacts: number of stops, traffic flow, etc.
 - Qualitative/socio-economical impacts: time costs, level of stress, environmental impacts, etc.
- Problems with estimation of ITS impacts
- Unknown impacts related data
 - At all
 - Short time lines only

- Deployment of SW simulation tools
 - Macro-scopic: VISUM, SATURN, Omni-Trans, ..
 - Electgronic Fee Collection on Motorways
 - Urban Road Charging
 - etc.
 - Micro-scopic: Vissim, Aimsun, Paramics, ...
 - Incident management systems
 - Ramp-metering systems
 - Etc.

Transport Telematics in Practice

Katowice, 28h September 2010

- SW simulation outputs processing & interpretation
 - Deterministic way: MS Excel, etc.
 - Applicable for quantitative impacts enumeration
 - Basic understanding of ITS app. objectives required
 - Special math tools: Fuzzy linguistic approximation, etc.
 - Applicable for qualitative impacts enumeration
 - Advanced understanding of ITS app. objectives required

Transport Telematics in Practice

Katowice, 28h September 2010

- Technologies to be used
 - Investment phase
 - Operation phase
- Alternatives definition
 - Technological differences
 - Pros/Cons
- CBA input parameters enumeration
 - Costs
 - Benefits

- Supervision is related to the infrastructural projects
 - Roads infrastructure
 - Railway infrastructure
 - ...
 - ITS infrastructure
- Supervision's objectives
 - Monitoring
 - Inspection
- ITS related specifics
 - Additional professions needed
 - Need to deal with functionality testing
 - Focus on the surrounding systems
 - Compliance with , strategies, architectures, etc.

Supervision's specific targets

- Independency
- Expert guidance
- Monitoring of the physical work flows
 - Contractor
 - Sub-contractors
- Monitoring of the work procedures quality
 - Contractor
 - Sub-contractors
- Background material preparation for
 - Technical check
 - Functional check
 - Financial check

- Supervision's related experts
 - Team leader
 - Low-voltage systems expert
 - High-voltage systems expert
 - Urban engineering expert
 - Transport infrastructure expert
 - Financial expert
 - Telematics systems expert
 - Telecommunication expert

- Monitoring and inspection of the
 - Formal compliance
 - Strategic/Conceptual compliance
 - Technical and functional compliance
 - Financial compliance
 - Other
- Steps undertaken
 - During the physical realization
 - After the physical realization
- Sometimes need for retrospective check

- Objective:
 - Determine how well project goals and objectives are being achieved in reality

Transport Telematics in Practice

- Real data measurements & collection
- Need before data or without measurement (do nothing)
 - Interviews
 - Surveys
 - Measurement of performance / empirical parameters for models etc.
- Perform results and process analysis
- If costs, performance and impacts really predictable, less necessary
 - but... reality is complex, especially in ITS
 - even if it works it doesn't mean that it has (enough) impact

Conclusion

- ITS Strategy needed for different levels it enables a systematic & harmonized ITS development in the country
- Ex-ante evaluation helps to propose and define ITS system parameters properly and allows to make ITS as efficient as possible
- Implementation needs to be supervized to ensure full and proper system deployment
- Ex-post evaluation helps to trim the system and forms the knowledge for future ITS projects

Thank you for your attention

starek@telematix.cz

Transport Telematics in Practice

Katowice, 28h September 2010