

WIM-E

Network of National ITS Associations Workshops

Prague 15.10.2009

Overloaded Heavy Vehicles

Damages to road network, bridges and pavement

Overloading contributes

to serious

road safety problems

- less stable vehicle
- difficult to steer
- massive strain on vehicle tires
- insurance cover is void
- unfair on other operators
- more fuel consumption

Our Solution

Weigh-in-Motion – Enforcement:

doubtless identification with

digital image documentation

15. October 2009

Weight-In-Motion (WIM) Systems

Dr. Thomas Spindler

Main Purpose:

Identification and manual verification of over-loaded vehicles (WIM-S + camera and fast data transmission)

Disadvantage:

Personnel and time consuming

- Very limited amount of trucks can be inspected
- •Inspections published >> drivers avoid these roads

Weigh-In-Motion Enforcement (WIM-E)

Main Purpose:

Fully automated WIM system that weighs every passing vehicle, stores data of overloaded trucks and transmits data to enforcement authorities

Necessary Equipment:

•WIM-E electronics
•Photo+video+ANPR camera, data storage and coding equipment
•Back office

15. October 2009

- •Permanent surveillance (24h / 7d)
- Near 100% acquisition of all overloaded trucks
- Prevent future incidents (learning process)
- •Number plate 'Black List' feature
- Increase lifetime (lower maint. costs etc.)

15. October 2009

- first WIM-E system in December 2007
- proof inadequate use of road (weight limit: 12t)
- ~500 events per month

Weight-In-Motion - Enforcement

15. October 2009

Camera System

15. October 2009

Violation camera specifications

CCD sensor:	Monochrome or color			
Scanning system:	Progressive scan			
Effective pixels:	11 M pixels			
AD converter:	14 bits / pixels			
Shutter:	Electronic shutter 1/50 to 1/10,000 s			
Lens connection:	ROBOT Mount			
System connections:	Sync, Trigger, RS422/232 IEEE-1394			
Temperature range:	-20° to +60°C, fan-less			

Violation camera image (sample data)

Date	Time	Weight	Speed	Code	
15.08.2	006 17:24:36.015	11 t	85 km/h	76548	
SPeed	Time Date	Code	Photo L Int	Fix Site	TraffiStar
056 km	∕h 16:31:05 19.06.20	106	476 0 1	050	S540
15. October 2009			Dr. Thomas Spi	ndler	13/2

Sequence camera image

15. October 2009

Dr. Thomas Spindler

14/25

Coverage of OCR Algorithm

- Weighing sensors installed in the road
- Forces penetrate sensors when wheels pass by
- Charges are generated through these forces
- Charges are amplified
- Analog signals are digitalized and processed
- Integration represent weight of wheel
- Results are class, weight, speed, length, gap

15. October 2009

- WIM Accuracy ok
- Photo Documentation ok

but

Court proven violations are required

- •Fixed tolerance
- Suppression of false events

LINEAS[®] quartz sensor by Kistler

Sensors, installation and Signals

1. Measurement

15. October 2009

2. Measurement

Advantages of the LINEAS® sensor

- Little damage to road surface
- Long term stability
- Sensor needs no servicing
- No drainage / no frame

- Almost invisible for drivers
- Independent of temperature changes

15. October 2009

- Independent of external forces
- Optimal surface adaption
- Entire road connection
- HS- and LS-WIM*

15. October 2009

- Scanning rate: 4,000s/s/sensor (4/8 sensors per lane)
- 16 single or 8 double loops, self tuning
- Up to 6 WIM lanes (double sensor lines)
- Up to 10 vehicle classes, up to 63 axle classes
- Integral GSM/GPRS modem
- Plug-in SD card
- SIM card front-accessible
- Integral graphic display

15. October 2009

WIM system specifications

- Error of measurement: < 5% (2 rows)
- Lifetime is dependent on quality of roads
- Data volume: ≈ 1 MByte/day/lane
- No temperature compensation necessary
- 32-bit processor
- RS 232/RS485 interfaces
- WLAN
- Power 12V to 24V

15. October 2009

Collected data

• Total weight

Wheel load

Axle load

Axle group

load

- Classification
- Speed
- Headway/Gap

15. October 2009

Conclusion

WIM-P & WIM-E both improve traffic safety

WIM-E provides major benefits

- no traffic disturbance
- close to 100% coverage
- reduced man power
- short term amortization